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met. It is shown for three distinct physical systems that the second time derivative of 
the entropy remains negative throughout the r e m  to equilibrium, for arbitrary initial 
displacements from this state. 

t btrodlldion 

baoentiond hemodynamic reasoning shows that for an isolated System Proceeding 
@equilibrium, the entropy s Satisfies 

(here h e  dot notation signifies differentiation with respect to time). Interest has been 
aroused recently in examining whether higher time derivatives of S may also possess a 
definite sign; in particular, whether 

Sa0 (1) 

SS0 (2) 

(-1)” d”S/dt” G 0 (3) 
01 even 

for lsnSco (Harris 1967, 1968a, b, Maass 1970, McElwain and Pritchard 1969, 
PritcbardetaZ 1974, Pritchard 1975, Shear 1968, Simons l969,1970,1971a, b, 1972, 
YaO 1971). The above result (3) has generally only been shown to hold for certain 
syyte” close to equilibrium, but the ‘convexity’ property (2) has been proved for 

systems arbitrarily displaced from equilibrium. These include certain chemical 
heat conduction and (subject to certain simple models) gas molecule interac- 

tions. 
f ie  Purpose of the present paper is to investigate further the range of application of 

qnation (2) for systems well away from equilibrium. In 00 2 and 3 we consider two 
manmPiC systems; the discharge of a capacitor through a resistor and the motion of a 

through a gas, showing that in both cases the result (2) holds. In 0 4 we deal with 
a*m described at an atomic level-the scatter of particles (molecules, electrons, 

Phonons, etc) by fixed scattering centres and show that for isotropic scatter ‘ pro~erty (2) is true. 

2 *e of a capacitor 

aQPacitor C with charge q discharging through a resistor R. The rate of heat 
Rq2 and assuming this to be instantaneously distributed throughout the 
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resistor at uniform temperature T(t), we have 

(4) 

(9 

(6) 

S = (R/T)q2 

assuming no heat lost from the resistor. Now, the discharge is governed by the eq- 

-Rq = q/C 

and hence we obtain from equation (4), 

S = q’/(C*RT). 

Differentiating this with respect to time gives 

Now, q < 0, f> 0 and d(RT)/dT > 0 since electrical resistance increases with tempen- 
ture more rapidly than T’. Thus all the terms in equation (7) are negative and r& 
(2) follows. 

3. Motion of a sphere in a gas 

We consider here the case of a sphere given an initial velocity and subsequently slowed 
down due to the resistance of the gas through which it moves. We are interested in the 
situation where the sphere is moving with arbitrary velocity, possibly greater than the 
gas molecular velocity, and therefore require an expression for the gas resistance vaiid 
under these circumstances. This has only been obtained in detail for the case where the 
gas molecular mean free path is substantially greater than the sphere dimensions, and 
we shall therefore confine our attention to this situation. The problem here has been 
considered by Baines et a1 (1965) and Williams (1973) who show that, as far as the 
temperature and sphere velocity U are concerned, the resistive force F always takesthe 
form 

F =  mTg(v2/T) (4 
where m is the mass of the sphere, and the precise form of the function g dependson the 
gas density and the area and surface properties of the sphere. It follows immediately 
from equation (8) that the motion of the sphere is described by the equation 

The rate of heat production is given by -(d/dt)($”), and if we assume this to be 
instantaneously distributed between the sphere and gas at uniform temperame r(fb 
we have 

d = -Tg(u2/T). (9) 

S = -mulj/T= mvg(v2/T) (10) 

from equation (9). Thus 

NOW since t, is continually decreasing and T is correspondingly increasing, it 
that tj 0 and (d/dt)(v2/ T )  s 0. Making use of the explicit form of g as given byBaines 
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ctdlf1965) and Williams (19731, it is readily shown that g’>O, which corresponds to 
increasing as IJ increases. It is therefore seen from equation (1 1) that 

biaequhty (2) holds- &gas* 

4. p&ie scatter 

b@s&on, we consider entropy production during the approach to equilibrium for a 
*em of particles each with the same energy, being scattered by fixed centres. The 
precise nature of the particles (whether molecules, electrons, phonons, neutrons etc) 
*enen the calculation as regards the type of statistics which the particles obey. For 
dmPfi&ty we shall suppose the particles to obey Boltzmann statistics, although the 
Qiculationmay be readily extended to cover Bose-Einstein and Fermi-Dirac statistics. 

htfp be the number of particles in the state labelled p .  Then the entropy S of the 
*em is given by 

S = - k  Cfp Inf’ 
P 

S = -k C fp In fp 
P 

shre&,f, isconstant. It is readily shown by an approach similar to that used in proving 
thestandard H theorem (e.g. Chapman and Cowling 1960) that S 0, the equality sign 
applying only in equilibrium when all fp are equal. On differentiating equation (13) 
again, we find 

(14) s’= s’, + s2 
&re 

$1 = -k glfi and S 2 =  -k Cfp lmf,. 
P P 

his dear that S, s 0. 

%is 
Todeal with S2, we consider the basic equation giving the development in time off,. 

6 = c Tw(fq -fp) 

& = E  qq(f4-fp) 

4 

*e Tp4 is the relevant matrix scattering operator. Hence 

4 

and this into equation (15) gives 

r7 

QexhbngP and q in the term involving f4, and using microscopic reversibility in the 
form ofthe symmetry relation 
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Finally we substitute from equation (16) for fp and obtain 

S ; = - k  C T,Tpr(f,-fr)(lnf,-lnfq). 
wr (19) 

me only generd property of the matrix T,, apart from the above symmetry relaka 
(18), is that Tp4 a0 corresponding to a non-negative transition probability. h e w o a  
m w  like to be able to prove on the basis of these two general properties alonethatsso. 
This, we have not been able to do. However, we have been able to prove that if the 
particle scattering is isotropic, then S C 0. Such scattering is characterized by r, &kg 
independent of q for given p,  and we can readily see that it must then be 
independent of p, since 

T,= Tpr= Trp= T, 

S2 = -kTz C (f, -f,)(ln fp -In fq). 
W' 

We exchange p and q in this summation and adding the resulting expression to thath 
(20), we find 

$ = ( - k p / 2 )  C (fp-fq)(lnfp-lnfq)- 
W' 

Since the sign of In f, -In fq is the same as that off, -fq, it follows that S;, s 0, and hence 
that S G 0. 

It would clearly be of interest to be able to prove this result without the isotropy 
assumption, and if this were done successfully, to attempt to generalize it to the more 
complex types of interactions that can occur between gas molecules and between 
phonons and electrons, and which require a more complicated expression than (16) 
(non-linear in the f's) for their description. 
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